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Abstract

In this paper we consider a conservative extension of the Euler equations for gas dynamics to describe a two-

component compressible flow in Cartesian coordinates. It is well known that classical shock-capturing schemes applied

to conservative models are oscillatory near the interface between the two gases. Several authors have addressed this

problem proposing either a primitive consistent algorithm [J. Comput. Phys. 112 (1994) 31] or Lagrangian ingredients

(Ghost Fluid Method by Fedkiw et al. [J. Comput. Phys. 152 (1999) 452] and [J. Comput. Phys. 169 (2001) 594]). We

solve directly this conservative model by a flux-split algorithm, due to the first author (see [J. Comput. Phys. 125 (1996)

42]), together with a high-order (WENO5) flux reconstruction [J. Comput. Phys. 115 (1994) 200; 83 (1989) 32]. This

algorithm seems to reduce the oscillations near the interfaces in a way that does not affect the physics of the experi-

ments. We validate our algorithm with the numerical simulation of the interaction of a Mach 1.22 shock wave im-

pinging a helium bubble in air, under the same conditions studied by Haas and Sturtevant [J. Fluid Mech. 181 (1987)

41] and successfully simulated by Quirk and Karni [J. Fluid Mech. 318 (1996) 129].

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Richtmyer–Meshkov instabilities arise when an interface between two different gases is impulsively ac-

celerated by acoustical waves (shock waves, large changes in density, etc.). These instabilities may induce a

compressible turbulent regime with high Reynolds numbers. Our goal is the numerical simulation of those

instabilities by means of a conservative and entropy satisfying scheme applied to the Euler equations for

multicomponent gas dynamics. We know that vanishing viscosity solutions to problems involving Rich-

tmyer–Meshkov instabilities might not exist, but we can obtain high-order numerical approximations with a
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resulting numerical viscosity (Reynolds number), for which the compressible turbulent regime is completely

developed and shocks, contacts and rarefaction waves propagate with correct strength and speed.

In this paper we use a fifth-order accurate conservative scheme, based on a flux splitting due to the first

author and the WENO5 reconstruction [11,15], to solve the multispecies Euler equations with an equation

of state (EOS) that allows mixing of the species. It has been pointed out in [12] that some conservative

shock-capturing schemes suffer from pressure and velocity oscillations near gas interfaces. However, we

have found through our numerical experiments that pressure and velocity fluctuations near gas interfaces

are small and do not seem to interfere with the physics of the simulation. The explanation of this apparent
contradiction to Karni�s analysis may be found in the mixing property of the EOS, which allows a smooth

transition between gases, and in the use of a scheme that has shown the property of alleviating, if not

avoiding, some pathologies, such as overheating at reflections, ‘‘carbuncle’’ and ‘‘kinked’’ Mach stems (cf.

Section 3).

The organization of the paper is the following: In Section 2 we show the Euler equations for the dy-

namics of a mixture of two gases. In Section 3 we explain the scheme we use in our experiments. Next, in

Section 4 we validate our one-dimensional algorithms, comparing their results with the exact solution of

some selected tests. In Section 5 we use our two-dimensional algorithms for the simulation of a 1.22 Mach
air shock impinging a cylindrical helium bubble, with identical setup as the one used in [20], obtaining

similar shock velocities and an interface with very fine details where a complete turbulent regime is de-

veloped. In Section 6 we use some techniques borrowed from level set theory to analyze the growth of the

instability. Finally, in Section 7 we present some issues on the parallel implementation of the algorithms

and in Section 8 our conclusions.

2. Multicomponent flow equations

For simplicity of exposition we assume that we aim to model the dynamics of a mixture of two gases in

two space dimensions, the extensions to more components or more dimensions being directly deduced. Let

q denote the density of the mixture, /, the mass fraction of the first component and, therefore, 1� /, the
mass fraction of the second component.

We assume that both components are in thermal equilibrium and are calorically perfect gases with

specific heats at constant volume Cv1;Cv2, specific heats at constant pressure Cp1;Cp2 and ratios of specific

heats c1; c2. By standard thermodynamic arguments (see [2] and references therein), the ratio of specific
heats of the mixture of gases is

cð/Þ ¼ Cp
Cv

¼ Cp1/ þ Cp2ð1� /Þ
Cv1/ þ Cv2ð1� /Þ : ð1Þ

The equation of state expresses the pressure P in terms of the density q, the specific internal energy � and
mass fraction / and it reads as

P ðq; �;/Þ ¼ ðcð/Þ � 1Þq�: ð2Þ

We model the dynamics of this mixture by the compressible Euler equations with an additional equation

expressing conservation of the first component, which, coupled to the conservation of mass, implies con-

servation of the second component as well. In two dimensions, these equations respectively express the
conservation of mass, momentum in x and y directions, total energy and mass of the first component and

they read as

Ut þ F ðUÞx þ GðUÞy ¼ 0; ð3Þ
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with the conserved variables U and fluxes F and G being given by

U ¼ ½q qu qv E q/�T;
F ðUÞ ¼ ½qu qu2 þ P quv ðE þ P Þu q/u�T;
GðUÞ ¼ ½qv quv qv2 þ P ðE þ P Þv q/v�T;

ð4Þ

where ðu; vÞ is the velocity field of the mixture and E is the total energy per unit volume. The functional

dependence of the fluxes F and G on the conserved variables can be obtained from (4), (2) and the usual

relations

u ¼ qu
q
; v ¼ qv

q
; � ¼ E

q
� 1

2
ðu2 þ v2Þ; / ¼ q/

q
: ð5Þ

System (3) is hyperbolic: the eigenvalues of F 0ðUÞ are k1 ¼ u� c, k2;3;4 ¼ u, k5 ¼ uþ c and the corre-

sponding right eigenvectors ri and left eigenvectors li, normalized so that ri 	 lj ¼ dij, are

r1 ¼ ½1 u� c v H � uc /�T;

r2 ¼ 1 u v
u2 þ v2

2
/

� �T
;

r3 ¼ ½0 0 1 v 0�T;

r4 ¼ 0 0 0

�
� X

c � 1
1

�T
;

r5 ¼ ½1 uþ c v H þ uc /�T;

l1 ¼ b2

�
þ u
2c

� /b3 � b1u�
1

2c
� b1v b1 b3

�
;

l2 ¼ ½1� 2b2 þ 2/b3 2b1u 2b1v � 2b1 � 2b3�;
l3 ¼ ½�v 0 1 0 0�;
l4 ¼ ½�/ 0 0 0 1�;

l5 ¼ b2

�
� u
2c

� /b3 � b1uþ
1

2c
� b1v b1 b3

�
;

ð6Þ

where

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ðq; �;/Þq þ

P
q2
P ðq; �;/Þ�

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
cð/ÞP

q

s
ð7Þ

is the local sound speed,

H ¼ E þ P
q

¼ c2

cð/Þ � 1
þ 1

2
ðu2 þ v2Þ

is the enthalpy and

X ¼ c0ð/Þ�; b1 ¼
c � 1

2c2
; b2 ¼ b1

u2 þ v2

2
; b3 ¼

b1X
c � 1

: ð8Þ
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The eigenstructure of G0ðUÞ is obtained in the usual manner, by interchanging the roles of u and v and the

second and third components of each left and right eigenvector. We point out that these linearizations only

depend on four variables, for instance, c; u; v;/. We refer to [7,12,18] for further details.

3. Marquina’s flux splitting formula

We describe our flux splitting formulation in the two-dimensional case. We follow Shu–Osher�s
flux formulation [22] to obtain a numerical flux F̂F (respectively ĜG) that approximates F (respectively

G) to an order r. We then use the method of lines to approximate system (3) by applying the TVD

third-order Runge–Kutta ODE solver (see [22]) to the following system, obtained by spatial dis-

cretization:

dUi;j

dt
þ 1

h
F̂Fiþð1=2Þ;j

�
� F̂Fi�ð1=2Þ;j

�
þ 1

h
ĜGi;jþð1=2Þ

�
� ĜGi;j�ð1=2Þ

�
¼ 0; ð9Þ

where Ui;jðtÞ is an approximation to Uðxi; yj; tÞ at a point ðxi; yjÞ of a bidimensional equispaced Cartesian

mesh, where xi ¼ ih, yj ¼ jh and h is the mesh spacing. In this expression, F̂F ; ĜG are the numerical fluxes, that

should approximate the fluxes in the following sense:

F ðUÞxðxi; yjÞ ¼
1

h
F̂Fiþð1=2Þ;j

�
� F̂Fi�ð1=2Þ;j

�
þ OðhrÞ; ð10Þ

GðUÞyðxi; yjÞ ¼
1

h
ĜGi;jþð1=2Þ

�
� ĜGi;j�ð1=2Þ

�
þ OðhrÞ; ð11Þ

for smooth U. This whole setup gives a conservative scheme which is third-order accurate in time and rth-

order accurate in space.

Shu and Osher�s idea (see [22]) to obtain the approximation in (10) ((11) is obtained by analogy) is to

apply the following idea to each characteristic flux, obtained from F by the local linearizations explained

below. Let then ut þ gðuÞx ¼ 0 be a scalar one dimensional conservation law. We view the flux gðuÞ as a
sliding average of some ‘‘primitive’’ function /h:

gðuÞðxÞ ¼ 1

h

Z xþðh=2Þ

x�ðh=2Þ
/hðsÞds; ð12Þ

for which the partial gðuÞx is given by finite differencing

gðuÞxðxÞ ¼
/h xþ h

2

� 	
� /h x� h

2

� 	
h

: ð13Þ

For smooth enough /h, one can achieve the desired approximation in (10) by a reconstruction via primitive

approach, that consists in the construction of a suitable approximation to a primitive Uh of /h and the

definition of the approximation to /h at xiþðh=2Þ as the derivative at this point of this approximation to Uh.

Namely, one can define the primitive of /h as

UhðxÞ ¼
Z x

0

/hðsÞds; ð14Þ
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and notice that

Uh xiþð1=2Þ
� 	

� Uh xi�ð1=2Þ
� 	

h
¼ 1

h

Z xiþð1=2Þ

xi�ð1=2Þ

/hðsÞds ¼ gðuÞðxiÞ ð15Þ

by (12), where xi
ð1=2Þ ¼ xi 
 ðh=2Þ. This observation is the key to construct approximations to Uh from

(known) generalized differences of tables of values of ðgðuÞðxlÞÞl, for a generalized difference of order q of

this table corresponds to a generalized difference of order qþ 1 of the table ðUhðxlþð1=2ÞÞÞl and order 0
differences (i.e., values) of this table vanish when differentiating.

In general, a reconstruction procedure R defined at xpþð1=2Þ ðp ¼ i� 1; iÞ from cell averages al
(l ¼ i� s; . . . ; iþ s), is required to satisfy

Rðai�s; . . . ; aiþs; xpþð1=2ÞÞ ¼ a xpþð1=2Þ
� 	

þ e xpþð1=2Þ
� 	

hr þ Oðhrþ1Þ; ð16Þ

with

aj ¼
Z xjþð1=2Þ

xj�ð1=2Þ

aðsÞds;

for a smooth function a. The positive integer r is the order of the reconstruction.

The use of a reconstruction for a ¼ /h and Eqs. (14) and (15) yield cell averages

al ¼
Uh xlþð1=2Þ
� 	

� Uh xl�ð1=2Þ
� 	

h
¼ gðuÞðxlÞ;

and, from (16), we deduce

R ai�s; . . . ; aiþs; xiþð1=2Þ
� 	

� R ai�s�1; . . . ; aiþs�1; xi�ð1=2Þ
� 	

¼ /h xiþð1=2Þ
� 	

� /h xi�ð1=2Þ
� 	

þ e xiþð1=2Þ
� 	�

� e xi�ð1=2Þ
� 		

hr þ Oðhrþ1Þ;

from which one obtains an rth-order numerical flux

ĝgiþð1=2Þ ¼ R gðuÞðxi�sÞ; . . . ; gðuÞðxiþsÞ; xiþð1=2Þ
� 	

: ð17Þ

Popular reconstructions are based on polynomials (ENO [10], PPM [25]) or hyperbolas (PHM [16]).

We have used the WENO5 [11] reconstruction, which achieves fifth-order accuracy using the same five

points stencil (s ¼ 2) as the ENO3 reconstruction. The WENO5 reconstruction is a nonlinear convex

combination of the three interpolating parabolas based on the stencils xi�2þj; xi�1þj; xiþj, j ¼ 0; 1; 2; that
appear in the ENO3 reconstruction. The nonlinear weights are based on smoothness indicators, judi-
ciously designed so as to attain fifth-order accuracy at smooth regions while degenerating to ‘‘digital’’

ENO3 at discontinuities. We include the precise formulae in an Appendix A for the sake of com-

pleteness.

In [6] it has been experimentally established that Marquina�s flux splitting has a built-in heat

conduction mechanism that alleviates certain pathologies that other solvers exhibit in some experi-

ments, such as overheating at shock reflections, kinked Mach stem (cf. [6]) and carbuncle (cf. [5]). It

has been used very successfully in astrophysical simulations at high relativistic regimes (cf. [5,14]).

Although, as we will see below, this formulation requires the use of two linearizations for each cell
interface, instead of one, as Roe solver does, this increase of computational cost in our implemen-

tation is only about 11%, for the time spent in the solver is much lower than the time for the re-

constructions.
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When applied to the one-dimensional helium bubble simulation (cf. Section 4), our implementation of

Shu–Osher�s scheme based on Roe�s linearization and WENO5 reconstruction works fine for coarse grids,

but crashes on medium grids (800 points), when gives negative pressure values, due to dramatic pressure

spikes. On the other hand, Marquina�s flux splitting seems to naturally prescribe enough viscosity to dis-

sipate spurious oscillations but not so much to smear excessively shocks and contacts. Our implementation

is extremely robust and works perfectly in very fine grids with high CFL conditions.

We now describe the construction of the numerical flux F̂Fiþð1=2Þ;j; obtaining ĜG is similar. We denote by uij
an approximation to Ui;j.

In what follows R stands for a reconstruction procedure; we have mainly used the WENO5 recon-

struction, which has a 5-points stencil and is fifth-order accurate, and also in one experiment the PHM

reconstruction, which has a 3-point stencil and is third-order accurate. We choose c; u; v;/ as the four

variables the eigenstructure of the Jacobian F 0ðUÞ depends on. We then perform two-sided reconstructions

of each of these quantities at the interface to obtain quantities

c
iþð1=2Þ;j; u
iþð1=2Þ;j; v
iþð1=2Þ;j; /

iþð1=2Þ;j; ð18Þ

where

Zþ
iþð1=2Þ;j ¼ R Zi�s;j; . . . ; Ziþs;j; xiþð1=2Þ

� 	
;

Z�
iþð1=2Þ;j ¼ R Zi�sþ1;j; . . . ; Ziþsþ1;j; xiþð1=2Þ

� 	
;

ð19Þ

and Z stands for c, u, v or /. These quantities define two local linearizations at the point ðxiþð1=2Þ; yjÞ, with
corresponding left and right eigenvectors l
k ; r



k (we obviate the dependence of these eigenvectors on i; j).

We denote

f 

m;k ¼ F ðum;jÞ 	 l
k ; x


m;k ¼ um;j 	 l
k ð20Þ

the characteristic fluxes and variables, according to each local linearization and then define the high-order

upwind characteristic fluxes w

k (k ¼ 1; . . . ; 5) by the following algorithm:

if kkðui;jÞ > 0 and kkðuiþ1;jÞ > 0

wþ
k ¼ Rðf þ

i�s;k; . . . ; f
þ
iþs;k; xjþð1=2ÞÞ

w�
k ¼ 0

else if kkðui;jÞ < 0 and kkðuiþ1;jÞ < 0
wþ
k ¼ 0

w�
k ¼ Rðf �

i�sþ1;k; . . . ; f
�
iþsþ1;k; xjþð1=2ÞÞ

else

a ¼ maxðjkðui;jÞj; jkðuiþ1;jÞjÞ
wþ
k ¼ Rð1

2
ðf þ

i�s;k þ axþ
i�s;kÞ; . . . ; 12 ðf

þ
iþs;k þ axþ

iþs;kÞ; xjþð1=2ÞÞ
w�
k ¼ Rð1

2
ðf �

i�sþ1;k � ax�
i�sþ1;kÞ; . . . ; 12 ðf �

iþsþ1;k � ax�
iþsþ1;kÞ; xjþð1=2ÞÞ

end

Then the numerical flux is defined by the flux-split formula

F̂Fiþð1=2Þ;j ¼
X5
k¼1

wþ
k r

þ
k

�
þ w�

k r
�
k

	
: ð21Þ

Note that, as usual, this splitting is defined according to the characteristic speeds, but with two ‘‘upwind

linearizations’’. At sonic points a local Lax–Friedrichs splitting is used.
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We point out that, for general systems, the conditions that ‘‘kðui;jÞ and kðuiþ1;jÞ have the same sign’’ and

‘‘a ¼ maxðjkðui;jÞj; jkðuiþ1;jÞjÞ’’ should be replaced by ‘‘if kðuÞ does not change sign in a path joining ui and

uiþ1’’ and ‘‘a ¼ maxðjkðuÞjÞ, u in a path joining ui and uiþ1’’. This simplification is permitted by the fact that

the characteristic fields for system (3) and (4) are either genuinely nonlinear or linearly degenerate.

4. One-dimensional numerical experiments

We consider the two-component Riemann problem for the 1D Euler equations corresponding to the Sod

tube test with a change in the adiabatic exponent

Fig. 1. Comparison of the results of our algorithm (400 points) versus the exact solution of the Sod tube problem with change of

adiabatic exponents, t ¼ 0:2. (a) Density, (b) pressure, (c) Mach number and (d) acoustic impedance.
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ql ¼ 1; ul ¼ 0; Pl ¼ 1; cl ¼ 1:4; Cvl ¼ 1;

qr ¼ 0:125; ur ¼ 0; Pr ¼ 0:1; cr ¼ 1:2; Cvr ¼ 1;
ð22Þ

where the first set of state variables initially apply to x 2 ½0; 0:5� and the second to x 2 ð0:5; 1�. This problem
has been studied before by several authors [1,12,13]. We compute the approximate solution of this problem

with a grid of 400 points and time 0.2, using our fifth-order accurate one-dimensional algorithm. In Fig. 1

we compare the density, pressure, Mach number and acoustic impedance (qc) obtained in this experiment

versus the exact solution (which can be obtained via Rankine–Hugoniot relations, cf. [24]). We observe

good agreement and accurate location of the waves. We also notice a slight overheating downstream the

contact discontinuity.
Our second test is the one-dimensional version of the shock–bubble interaction computed in our main

applications, studied in Section 5. We display in Fig. 2 the density, pressure, Mach number and acoustic

Fig. 2. Comparison of the results of our algorithm with 400 points versus 3200 points when applied to the one-dimensional helium

bubble problem, t ¼ 290ls. (a) Density, (b) pressure, (c) Mach number and (d) acoustic impedance.
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impedance obtained by our algorithm using 400 points versus those quantities obtained by our algorithm

with a grid of 3200 points. We observe that the refracted shock wave inside the bubble is travelling faster
due to the fact that helium has a lower acoustic impedance than air. This also implies that the first reflected

wave is a rarefaction wave (cf. [26] for a complete study of one-dimensional shock-contact Riemann

problems). We depict in Fig. 3 the details of the pressure profile. We can see very mild oscillations at the

edges of the bubble corresponding to the low resolution simulation (400 points) and that these oscillations

are hard to discern in the high resolution plot (3200 points), that has a resolution close to that used in our

main simulation, see Section 5. This is by no means a contradiction to the analysis in [12], that concerns the

‘‘startup’’ error in the pressure when only c changes value through a contact, mainly because it does not

apply at advanced stages of the simulation and for high-order schemes. We do not claim that our scheme
does not have pressure oscillations near material interfaces, but that those are really startup errors that

dissipate very early in the simulation. In fact, assuming a problem with an initial supersonic material in-

terface (so that the analysis of our scheme is simple, for then the numerical fluxes are real fluxes), it can be

seen that the first-order version of our scheme has exactly the same pressure oscillation as the one computed

in [12], namely

dp ¼ kð1� kÞ p
ðcl � 1Þðcr � 1Þ dc2; ð23Þ

where dc ¼ cr � cl, cl and cr are the quotients of specific heats at each side of the interface, k ¼ ðdt=dxÞu and
u is the (constant) velocity, which we assume to satisfy u > maxðcl; crÞ, with ci ¼

ffiffiffiffiffiffiffiffiffiffiffi
cip=q

p
being the local

sound speed at each corresponding side of the interface.

5. Application: shock–bubble interaction

We study the shock–bubble interaction of a 1.22 Mach shock wave with a helium cylindrical bubble in

air, originally studied by Haas and Sturtevant in [9] and addressed by Quirk and Karni in [20], from the

computational point of view by using a primitive consistent second-order algorithm.

The computational domain is sketched in Fig. 4. We point out that the dimension of the bubble is the
same as in [20] and the longitude of the domain is shorter, but this does not affect the simulation. We label

Fig. 3. Comparison of zoom of pressure for the results of our algorithm with 400 points versus 3200 points when applied to the one-

dimensional helium bubble problem, t ¼ 290ls.

128 A. Marquina, P. Mulet / Journal of Computational Physics 185 (2003) 120–138



the interior of the bubble as region I, the pre-shock region outside the bubble as region II, the post-shock

region as region III and we use these labels for identifying quantities in corresponding regions.

As in [20], we assume the bubble to be filled with helium contaminated with 28% of air and in ther-

modynamical and mechanical equilibrium with the surrounding air. We take the density of air at pressure

pII ¼ 101325 Pa to be qII ¼ 1225g=m3, so that its sound speed is 340.294m/s. By using the relationship

p ¼ RqT in regions I and II, pI ¼ pII and TI ¼ TII, we deduce that qI ¼ qIIðRII=RIÞ and obtain from this and

Table 1(a) that qI ¼ 222:8g=m3. A 1.22 Mach left traveling vertical shock separates regions II and III.
From its Mach number and standard shock relationships (cf. [23, pp. 100–102]) we deduce the state

variables in region III. In Table 1(b) we collect the constant state variables in each region.

We have used a computational grid of 8000
 800 cells to discretize the upper half part of the

domain, the lower have been obtained by symmetry with artificial reflecting boundary conditions. This

results in a spatial resolution of 0.056mm, the same used for the simulation in [20]. We impose re-

flecting boundary conditions on the top and bottom of the grid and outflow boundary conditions on

the left and right sides of the grid. The reflective boundary conditions used in our WENO5 simulation

were implemented by defining ‘‘ghost cells’’ where we extended the conserved quantities, changing the
sign of the transversal momentum component, and leaving the boundary at the interface. Then, we use

enough ghost cells to get defined all the reconstructed characteristic fluxes, using the WENO5 recon-

struction procedure. This procedure is more complex than the one proposed by Jiang and Shu, but the

resulting code is more consistent with Marquina�s flux formula. We did not observe any loss of ac-

curacy, nor overheating effect near the boundaries.

In Fig. 5(a) we show an x–t diagram of the position of the key features explained in Fig. 5(b). We obtain

the position of these features by computing the zero crossings of the second difference (i.e., inflection points)

of horizontal sections of the density at different times. We use sections taken at the axis of symmetry, except
for the upstream bubble interface (for times > 120ls, we get a section at a height of 20mm from the axis)

and the incident shock (we use a section at 5mm from the top wall). We compute the mean velocities of

these features by using minimum squares line adjustment to approximate the (visually) straight segments of

their trajectories displayed in Fig. 5.

In Table 2 we display these velocities, together with the time intervals involved in their computation, and

compare them to those obtained by Haas and Sturtevant [9] and Quirk and Karni [20]. We note the good

agreement with Quirk and Karni�s results and with Haas and Sturtevant�s experimental results within the

estimated error bounds. The discrepancy of )5% in the velocity of the downstream interface (Vdi in
the table) is the most notable. To explain it, we notice in Fig. 5(a) the curvature of the trajectory of the

downstream bubble interface, just when the refracted shock hits it. This curvature suggests a positive

acceleration of this interface, with an early stage velocity of about 90m/s at 55ls and a constant steady-

state velocity of 153m/s in the time interval [140, 240]. Therefore, we could have obtained any mean

velocity of this interface, in the range [90, 153m/s] when averaging; e.g., in the time interval [100, 240] we

obtain a mean velocity of 145m/s, thus matching the experiment. We have nevertheless preferred to obtain

the mean velocities at the straight segments of the trajectories, whenever possible.

Fig. 4. Sketch of the computational domain (not to scale). Lengths in millimeters.
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Regarding the comparison of the velocities obtained in our numerical experiments to those obtained in

[20], we point out the very close agreement of the mean velocities displayed in Table 2, above all the one for

the refracted shock (exact match) and for the transmitted shock (1.1% of error).

Table 2

Velocities of the features explained in Fig. 5

VS VR VT Vui1 Vui2 Vdi Vj

Marquina and Mulet 414 943 373 176 111 153 229

Haas and Sturtevant 410 900 393 170 113 145 230

Percentage error )1.0 )4.6 5.4 )3.4 1.8 )5.2 0.4

Quirk and Karni 422 943 377 178 146 227

Percentage error 1.9 0 1.1 1.1 )4.6 )0.9

The time intervals for computing each velocity are: VS [0, 60], VR [0, 52], VT [52, 240], Vui1 [10, 52], Vui2 [140, 240], Vdi [140, 240],

Vj [140, 240].

Table 1

c Cv R

(a) Specific heats and R constant for air and helium contaminated with 28% of aira

Air 1.4 0.72 0.287

He+ 28% air 1.648 2.44 1.578

q u v P

(b) State variables for regions I, II, and IIIb

I 222.8 0 0 101,325

II 1225 0 0 101,325

III 1686.1 )156.26 0 250,638

a The units for Cv and R are J/(g K).
b The units are g=m3 for the density, m/s for the velocities and Pa for the pressure.

Fig. 5. (a) x–t diagram of the key features explained in (b); (b) VS: incident shock, VR: refracted shock VT: transmitted shock, Vui:

upstream border of the bubble, Vdi: downstream border of the bubble, Vj: air jet head.
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In Fig. 6 we show the pressure profile (t–P diagrams) at 3mm downstream the initial bubble position.
These compare qualitatively well with the corresponding pressure profile [9, Fig. 17(d), p. 61].

We borrow from [20] a schlieren-type technique for the visualization of weak flow features. Namely, we

consider an idealized schlieren function on grid data ðq;/Þ as

si;j ¼ exp

 
� kð/i;jÞ

jrqi;jj
maxi;j jrqi;jj

!
; kð/i;jÞ ¼

20 if /i;j > 0:25;
100 if /i;j < 0:25;

�
ð24Þ

and notice that si;j � 1 when qi;j � 0 and, for large enough k, si;j � 0 for large qi;j. When displayed on a

screen with, for instance, MATLABMATLAB �s commands colormap gray(256); imagesc(s), the larger the

density fluctuation the darker the corresponding pixel value.

We display in Fig. 7 our schlieren images that most closely resemble the shadowgraphs displayed in [9] at

times: 32, 52, 62, 72, 82, 102, 245, 427, 674 and 983ls. A close agreement between our images and the

experimental shadowgraphs is obtained, but we warn the reader that the times at which these images have

been obtained in our simulation are: 23, 43, 53, 67, 75, 102, 260, 445, 674 and 983ls, which are slightly

different from those above. This comes as no surprise, for the key features used to match our schlieren
images with the shadowgraphs are the relative positions of some shocks (refracted, transmitted or reflected)

with respect salient features of the interface, and those shocks in Haas and Sturtevant�s experiment move at

different velocities than in our simulation. In the following we expound plausible explanations for these

time mismatches.

In [9], one clearly sees that the refracted shock, moving at an estimated velocity of 900m/s, should be

located at 900 m=s
 32ls ¼ 28 mm to the left of the original upstream (right) bubble edge at 32ls, that is,
it should have passed the center of the 50mm diameter bubble. But it can be seen that the shock in the

corresponding shadowgraph ([9, Fig. 7]) has barely traveled one third of the original bubble diameter.
From high resolution digitalization of the shadowgraphs corresponding to 32 and 52ls, we measure that

the distances traveled by the refracted shock from the initial upstream bubble position are 19.8mm for 32ls
and 37.1mm for 52 ls. These measurements give estimates for the mean velocities in the intervals ½0; 32ls�
and ½32; 52ls� of 619 and 865m/s, respectively. This second velocity nearly agrees with the refracted shock

velocity estimated in [9] (900m/s), but the first one is much lower than expected.

If we assume a uniform contamination with air inside the bubble, the refracted shock cannot accel-

erate once it has penetrated into it. Therefore, we conjecture a formula s ¼ vðt � t0Þ for the distance s

Fig. 6. Pressure profile at 3mm downstream the initial bubble position.
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traveled by the shock inside the bubble since time t, where v is the velocity and t0 is a delay. From the

measurements above we can estimate t0 � 9ls. This delay is crucial in the early stages of the simulation,

since the refracted shock travels so fast that crosses the 50mm bubble in 50mm=943m=s ¼ 53ls (see

Table 2), so a discrepancy of 9ls may account for a discrepancy in the shock location of 17% of the
bubble diameter.

Fig. 7. Schlieren image of the bubble at times (a) 23ls (32 ls), (b) 42ls (52ls, (c) 53ls (62ls), (d) 66ls (72ls), (e) 75ls (82ls),
(f) 102ls (102ls), (g) 260ls (245ls), (h) 445ls (427ls), (i) 674ls, (j) 983ls (following each time we display in parentheses the

corresponding times in the experiment).
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This delay explains the time mismatch in the pictures corresponding to 32, 52, 62ls. After this, the gap

between the times in the experiment and the simulations gets narrower, until it gets its sign reversed by

102ls. Now, the match between the experiment and the simulations is basically governed by the trans-

mitted shock, whose velocities in the experiment (393m/s) and in our simulation (373m/s) suffer a mismatch

of 5.4% (and 4.2% with respect to the results in [20]). This velocity mismatch may cause proportional time

mismatches in the simulation, from the time when the shock is transmitted outside the bubble (52ls) to 260

(respectively 445ls), when we record our image displayed in Fig. 7(g) (respectively (h)). This can be con-

firmed by the following calculations: ð260� 52Þ=ð245� 52Þ ¼ 1:077 � 1:054 ¼ 393=373, ð445� 52Þ=
ð427� 52Þ ¼ 1:048 � 1:054 ¼ 393=373.

In Fig. 7(a) we display the bubble at several stages of the simulation:

• 23ls (this corresponds to 32ls in the experiment) after it is first hit by the shock: we can see the diver-

gence of the refracted shock, which travels faster inside the bubble, due to the higher sound speed inside

the bubble. The reflected wave is an expansion wave, because the acoustic impedance inside the bubble is

lower than outside.

• 42ls (52ls in the experiment): we observe that the incident shock and the transmitted shock form a qua-

druple shock configuration, visible at the top; the refracted shock advances fast towards the left bubble
interface; the internal reflection of the refracted shock appears as two little cusps behind the crossing of

the refracted shock with the interface.

• 53ls (62ls in the experiment): the refracted shock hits the downstream interface; the internally reflected

wave is clearly seen as two cusps moving towards the axis of symmetry. Meanwhile, the upstream bubble

interface is flattening.

• 66ls (72ls in the experiment): we can see that the internally reflected wave has emerged from the down-

stream interface and its two branches appear clearly.

• 75ls (82ls in the experiment): now the internally reflected waves have crossed and look like a small oval
inside the bubble; the two branches of the transmitted shock have crossed near the downstream bubble

edge.

• 102ls (102ls in the experiment): at this point, we observe that the internally reflected wave hits the up-

stream interface, resulting in two very weak waves: the transmitted wave, that is noticed as a back-scat-

tered wave, and a secondary internally reflected wave, that appears very faintly in the picture, but not in

the experiment. The interface commences to appear slightly perturbed by the successive accelerations

caused by the waves and almost flattened in its right side.

• 260ls (245ls in the experiment): now we clearly observe many shocks resulting from reflections of
transmitted shocks with the top and bottom walls. There is considerable vorticity generation at the

interface and a jet is forming at the upstream edge of the bubble, which begins to adopt a kidney

shape.

• 445ls (427ls in the experiment): at this point, the jet is more clearly visible and the vorticity has in-

creased considerably.

• 674ls: we see the bubble spreading out laterally and forming two vortical structures, due to the impact

of the jet head on the downstream interface.

• 983ls: we observe that the two vortical structures are practically separated by a string of little bubbles.
Our simulation shows a complete turbulent regime compared to the Quirk–Karni second-order accurate

simulation. Indeed, we observe a very clear vortex structure, induced by the Kelvin–Helmholtz instabilities

at the top and bottom interface of the bubble in our simulation, in contrast with the Quirk–Karni simu-

lation where we see a noisy interface. The structure at the center appears to be better resolved for our

simulation.

In Fig. 8(a) (respectively (b)) we depict a high resolution schlieren picture of the bubble 546ls after its
interaction with the shock computed with the WENO5 reconstruction, resp. the PHM reconstruction.

Comparing those density schlieren images, we can observe that the PHM simulation has not developed all
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the turbulent structure at the interface, (see Kelvin–Helmholtz instabilities and vortex structure). This means

that the resulting Reynolds number of the PHM experiment is neatly smaller than the one obtained for our
WENO5 experiment. We can conclude that not only the grid size, but the order of accuracy of the recon-

struction procedure used in the simulation determines the viscosity and a fortiori the resulting Reynolds

number.

As a final remark in this section, we point out that the small discrepancies observed between the ex-

perimental data and our numerical simulation might come from the assumption of a uniform contami-

nation of air inside the helium bubble (28% in our case). We therefore conjecture a nonuniform

contamination profile, with a high concentration of air near the membrane that rapidly decreases towards

the center.
We suggest a cost-effective procedure to adjust the initial data so that the speed and strength of the waves

in the numerical simulation better match those in the experiment. Since the speed of propagation of shock

waves depends on the acoustic impedance, it is enough to use a coarse grid to fit the initial contamination

profile to get a satisfactory match for the velocity of the main waves. We can afford many trials on this

coarse grid, for the computation of the simulation on it is cheap. Once we have adjusted the initial con-

tamination profile, we can proceed to get a high resolution computation in a fine grid to get the com-

pressible turbulent regime completely developed.

6. Level sets, morphology and convergence

The method described in this paper evolves two fluids, allowing some region of mixture, for which the

conservation of partial masses is ensured by the conservative formulation. In general, for stable interfaces,

we expect our algorithm to achieve convergence and conservation, since we use the inviscid Euler equations

as model. However, if the interface is unstable, due to either Kelvin–Helmholtz [8] or Richtmyer–Meshkov

[21] instabilities, the vanishing viscosity solution does not exist, thus we try to approximate a viscous so-
lution depending on the grid resolution and degree of accuracy that represents the physical experiment with

a resulting Reynolds number.

Fig. 8. Color Schlieren image at time 546ls: (a) computed with WENO5 reconstruction; (b) computed with PHM reconstruction.
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One way to measure the degree of instability of the interface consists in exploring the dependence of the

length of the instability LtðhÞ, for a fixed time t, on the spatial resolution h. If the interface is stable we

expect the limit

lim
h#0

LtðhÞ ¼ L0 ð25Þ

to exists and to be finite.

However, if the interface is unstable, we conjecture a rate of growth of LtðhÞ, namely, the existence of an

exponent 0 < p < 1 such that

LtðhÞ ¼ Oðh�pÞ: ð26Þ

Following [27], we denote by C the zero level set of a function w,

C ¼ fðx; yÞ : wðx; yÞ ¼ 0g; ð27Þ

and by HðzÞ the Heaviside function (HðzÞ ¼ 1 for zP 0, HðzÞ ¼ 0 for z < 0). Then H 0ðzÞ is the Dirac delta

distribution and we have the following formula for the length of C:

LðCÞ ¼
Z

X
jrHðwðx; yÞÞjdxdy ¼

Z
X

dðwðx; yÞÞjrwjdxdy: ð28Þ

We implement this formula by numerical integration, using a smooth approximation of the Dirac delta

~HHðzÞ ¼ 1

2

zffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b

p
 

þ 1

!
� HðzÞ; ð29Þ

~ddðzÞ ¼ ~HH 0ðzÞ ¼ 1

2

b

ðz2 þ bÞ3=2

 !
� dðzÞ; ð30Þ

where b ¼ h. That is, we approximate

LðCÞ � ~LLðCÞ ¼ h2
X
i;j

~ddðwi;jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx

i;jw
� 	2 þ ry

i;jw
� 	2q

;

rx
i;jw ¼ 1

h
minmodðwiþ1;j � wi;j;wi;j � wi�1;jÞ;

ry
i;jw ¼ 1

h
minmodðwi;jþ1 � wi;j;wi;j � wi;j�1Þ:

ð31Þ

We apply (31) to the function w ¼ 2/ � 1, where / is the mass fraction (cf. Section 2) of the simulation

at t ¼ 546ls (a schlieren-type image of this simulation for the finest resolution is displayed in Fig. 8). The

zero level set of w corresponds to the 1
2
level set of /, i.e., the points with a 50% of concentration of each

species. The approximated lengths of this level set obtained from spatial resolutions of h1 ¼ 2:2
 10�4,

h2 ¼ 8:90
 10�5 and h3 ¼ 5:6
 10�5 are l1 ¼ 0:2732, l2 ¼ 0:4047 and l3 ¼ 0:6573, respectively. Regarding

(26), we try to adjust these data to the formula

li ¼ ð1þ �iÞKh�pi ; ð32Þ

where �i is some error that arises from errors in the simulation, in the approximation of the interface length

and, above all, the chaotic nature of the instability and K is a fitting parameter. By taking logarithms, the

formula (32) can be cast to a linear system, to be solved by least squares
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log li ¼ log K � p log hi: ð33Þ

From the least-squares fitting, we obtain p ¼ 0:61 as an estimate for the exponent that governs the interface
growth length.

7. Computational issues: MPI

We have used the MPI standard for message passing (as implemented in the MPICH library [17]) for our

two dimensional simulations. We have run our implementations on a Linux Beowulf cluster [3], consisting of

ten i386-compatible processors, each capable of performing floating point operations at a rate of about
600MFlops/s and connected by a fast ethernet switch, with a bisection bandwidth of about 50Mbytes/s. These

processors are arranged as a logical linear computing array and global communications is seldom needed.

The relatively large communication latency is hidden by our coarse grain parallel implementation, that

assigns patches of 800
 800 cells to each of the 10 processors and only needs to interchange a narrow

vertical band (3
 800 for our WENO5 implementation) with each of its two neighbours, to keep the ‘‘ghost

cells’’ (those adjacent to the boundary of the ‘‘local’’ computational domain) updated. The load balance is

very satisfactory. We have measured a parallel efficiency of 89%, i.e.,

Timeð1 procÞ
10
 Timeð10 procÞ � 0:89:

Our brute force effort employs 378 wall-clock hours (or 3780 cpu hours for the 10 CPUs) for the sim-
ulation of the shock–bubble interaction. We plan to implement our algorithms using the AMR technique

[4,19,20].

8. Conclusions

We have proposed in this paper a flux-split algorithm that resolves a fully conservative model based on

the inviscid Euler equations for a fluid flow that consists of a mixture of ideal gases in thermal equilibrium.
This algorithm uses the WENO5 spatial reconstruction to achieve fifth-order spatial accuracy. We have

shown the robustness, numerical accuracy and essential lack of important oscillations near interfaces

through the simulation of an air–helium shock–bubble interaction. We have found very good agreement

with Haas and Sturtevant�s experimental data as well.
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Appendix A

The values for the WENO5 reconstruction (see [11]) that are needed in (19) and in the algorithm in

Section 3 are defined by

Zþ
iþð1=2Þ;j ¼ R Zi�2;j; . . . ; Ziþ2;j; xiþð1=2Þ;j

� 	
¼ Rweno5ðZi�2;j; . . . ; Ziþ2;jÞ;

Z�
iþð1=2Þ;j ¼ R Zi�1;j; . . . ; Ziþ3;j; xiþð1=2Þ;j

� 	
¼ Rweno5ðZiþ3;j; . . . ; Zi�1;jÞ;

ðA:1Þ
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where the function Rweno5 is given by

a0 ¼
1

10
e

�
þ 13

12
ðf�2 � 2f�1 þ f0Þ2 þ

1

4
ðf�2 � 4f�1 þ 3f0Þ2

��2

;

a1 ¼
6

10
e

�
þ 13

12
ðf�1 � 2f0 þ f1Þ2 þ

1

4
ðf�1 � f1Þ2

��2

;

a2 ¼
3

10
e

�
þ 13

12
ðf0 � 2f1 þ f2Þ2 þ

1

4
ð3f0 � 4f1 þ f2Þ2

��2

;

S ¼ a0 þ a1 þ a2;wi ¼ ai=S;

Rweno5ðf�2; . . . ; f2Þ ¼ w0

1

3
f�2

�
� 7

6
f�1 þ

11

6
f0

�
þ w1

�
� 1

6
f�1 þ

5

6
f0 þ

1

3
f1

�
þ w2

1

3
f0

�
þ 5

6
f1 �

1

6
f2

�
:

The value of e should be small. In this paper we have chosen e ¼ 10�6.
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